The Reversible Protonation of Rhenium(v_{\parallel}) Heptahydrides of Type [ReH₇(PR₃)₂] to give

Xavier L. R. Fontaine, Edmund H. Fowles, and Bernard L. Shaw*

School of Chemistry, Leeds University, Leeds LS2 9JT, U.K.

η²-Dihydrogen Complexes

The first examples of the protonation of d⁰ metal complexes of type $[\text{ReH}_7(\text{PR}_3)_2]$ $[\text{PR}_3 = \text{P}(\text{cyclohexyl})_3, \text{PPh}_3 \text{ or PBu}_2^{\text{r}}\text{Me}]$, to give η^2 -H₂ complexes, are described.

There is currently much interest in dihydrogen as a ligand, *i.e.* in η^2 -H₂ complexes, and in how such complexes relate to the isomeric dihydrido complexes.¹⁻⁵ Several such dihydrogen complexes have been prepared by protonation of hydridometal complexes, in which the metal atom has a d², d⁴, d⁶, or d⁸ electron configuration, *e.g.*, equations (1)—(4), [dppe = 1,2-bis(diphenylphosphino)ethane, cp = cyclopentadienyl, cy = cyclohexyl].

(d²)
$$[MoH_4(dppe-PP')_2] \xrightarrow{H^+} [MoH_4(\eta^2-H_2)(dppe-PP')_2]^{2+}$$

(1)³

$$(d^4) [IrH_5(Pcy_3)_2] \xrightarrow{H^+} [IrH_2(\eta^2 \cdot H_2)_2(Pcy_3)_2]^+$$
(2)

(d⁶) [(cp)RuH(dppe-*PP'*)]
$$\xrightarrow{H^+}$$
 [(cp)RuH₂(dppe-*PP'*)]⁺ and
[(cp)Ru(η^2 -H₂)(dppe-*PP'*)]⁺ (3)⁴

$$(d^8) [RhH{P(CH_2CH_2PPh_2)_3}] \xrightarrow{H^+} [Rh(\eta^2 H_2){P(CH_2CH_2PPh_2)_3}]^+$$
(4)

Such η^2 -dihydrogen complex formation could go *via* a hydride, formed by protonation of a d-electron pair, *viz*. M–H \rightarrow MH(H) \rightarrow M(η^2 -H₂). However, there is the possibility that a hydride ligand could be protonated directly without the intermediacy of a dihydrido species. We now report the first

examples of the protonation of d⁰ metal complexes to give η^2 -dihydrogen complexes. Recently, Henderson³ reported the protonation of [MoH₄(dppe-*PP'*)₂] (d²) to give a transient dihydrogen complex [MoH₄(η^2 -H₂)(dppe-*PP'*)₂]²⁺ (lifetime 0.75 s) and suggested that an intermediate [MoH₅(dppe-*PP'*)₂]⁺ was in rapid equilibrium with [MoH₃(η^2 -H₂)(dppe-*PP'*)₂]⁺.

We have now found that at or below -40 °C, on addition of $HBF_4 \cdot Et_2O$, rhenium heptahydrides of the type $[ReH_7(PR_3)_2]$ $(PR_3 = Pcy_3, PPh_3 \text{ or } PBu_2Me)$ reversibly form species of composition $[ReH_8(PR_3)_2]^+$ which must be η^2 -dihydrogen complexes. Thus, treatment of a dichloromethane-deuteriodichloromethane solution of the known heptahydride $[\text{ReH}_7(\text{Pcy}_3)_2]^6$ (n.m.r. data in Table 1) with > 1 mol. equiv. of HBF₄·Et₂O at -80 °C caused no evolution of gas and gave a new species showing a singlet ³¹P-{¹H} resonance (δ_P 36.3 p.p.m.) and a broad ¹H resonance ($\delta_{\rm H}$ -5.9, $w_{1/2} \simeq 20$ Hz) with no fine structure, in quantitative yield. Addition of an excess of NEt₃ gave back $[\hat{R}eH_7(Pcy_3)_2]$ (n.m.r. evidence) in quantitative yield. The protonated species evolved dihydrogen above -40 °C. Particularly informative were experiments on the addition of less than 1 mol. equiv. of HBF₄·Et₂O to $[\text{ReH}_7(\text{Pcy}_3)_2]$. Thus addition of 0.75 mol. equiv. at $-80 \text{ }^\circ\text{C}$

Table 1. ${}^{31}P$ -{ ${}^{1}H$ }^a and ${}^{1}H^{b}$ n.m.r. data

Complex	δ_P	$\delta_{\rm H}$	$^{2}J_{\rm PH}/\rm Hz$
$[\text{ReH}_7(\text{Pcy}_3)_2]$	47.6	-7.4	18.8
$[\text{ReH}_{8-2x}(\eta^2 \cdot H_2)_x(\text{Pcy}_3)_2]^+$	36.3	-5.9	not resolved
$[\text{ReH}_7(\text{PPh}_3)_2]$	30.4	-5.0	18.5
$[\text{ReH}_{8-2x}(\eta^2 - H_2)_x(\text{PPh}_3)_2]^+$	17.8	-4.6	4.2°
$[\text{ReH}_7(\text{PBu}_2^{\text{Me}})_2]$	50.2 ^d	-6.65^{e}	19.8°
$[\text{ReH}_{8-2x}(\eta^2 - H_2)_x(\text{PBu}_2^tMe)_2]^+$	40.1ª	-5.78e	6.1e
Measured at 162 MHz and	-80 °C ir		unless stated

^aMeasured at 162 MHz and -80 °C in CD₂Cl₂, unless stated otherwise. ^bMeasured at 400 MHz and -80 °C in CD₂Cl₂, unless stated otherwise. ^cMeasured at -40 °C and 100 MHz. ²J_{PH} was not resolved at -80 °C. ^dMeasured at 40.3 MHz. ^cMeasured at 100 MHz.

to a solution in CD_2Cl_2 showed a very small, broad peak at δ_H +11.7 ($w_{1/2} \approx 50$ Hz) due to HBF₄, a well defined 1:2:1 triplet at -7.4, ${}^{2}J_{PH}$ 18 Hz, due to [ReH₇(Pcy₃)₂], and a broad resonance at $-5.9 (w_{1/2} \approx 20 \text{ Hz})$ due to the protonated species $[\text{Re-}H_{8-2x}(\eta^2-H_2)_x(\text{Pcy}_3)_2]^+$, x = 1, 2, or 3 (see below) (spectra measured at 400 MHz). The proportions of $[\text{ReH}_{8-2x}(\eta^2-H_2)_x(\text{Pcy}_3)_2]^+$ and $[\text{ReH}_7(\text{Pcy}_3)_2]$ were $\approx 3:1$. Similar results were obtained on protonation of [ReH₇(P- $Bu_{2}^{t}Me_{2}$ or $[ReH_{7}(PPh_{3})_{2}]^{7}$ except that in these two cases ${}^{2}J_{PH}$ coupling in the η^{2} -dihydrogen complexes was resolved. Thus treatment of ReH₇(PBut₂Me)₂ with 0.75 mol. equiv. of HBF₄·Et₂O at -80 °C in CD₂Cl₂ solution showed unchanged [ReH₇(PBu^t₂Me)₂] (minor component) and the protonated species $[\text{ReH}_{8-2x}(\eta^2-\text{H}_2)_x(\text{PBut}_2\text{Me})_2]^+$ (major component) (n.m.r. data in Table 1) and in this case no unreacted $HBF_4 \cdot Et_2O$ could be detected. The data for a similar experiment on the protonation of $[ReH_7(PPh_3)_2]$ giving $[\operatorname{ReH}_{8-2x}(\eta^2-H_2)_x(\operatorname{PPh}_3)_2]^+$, are also shown in Table 1.

We applied Crabtree's method of T_1 measurements to establish the presence of η^2 -dihydrogen ligands.^{2.8} Using the inversion recovery method we measured T_1 values at 400 MHz for both [ReH₇(Pcy₃)₂] and [ReH_{8-2x}(η^2 -H₂)_x(Pcy₃)₂]⁺, present in the same CD₂Cl₂ solution prepared as above, and found for [ReH₇(Pcy₃)₂] 0.12 s (-100 °C), 0.11 s (-70 °C), 0.13 s (-50 °C) and for [ReH_{8-2x}(η^2 -H₂)_x(Pcy₃)₂]⁺ 0.03 s (-100 °C), 0.03 s (-90 °C), 0.05 s (-70 °C), 0.09 s (-50 °C). With an excess (2 mol. equiv.) of HBF₄·Et₂O, which protonated all the [ReH₇(Pcy₃)₂], we found at -90 °C that T_1 for [ReH_{8-2x}(η^2 -H₂)_x(Pcy₃)₂]⁺ was 0.03 s, *i.e.* the same value as with a deficiency of acid. These values were reproducible and lie within the values suggested for η^2 -dihydrogen complexes. Similar small T_1 values were found for [ReH_{8-2x}(η^2 -H₂)_x(PPh₃)₂]⁺, *e.g.* 0.02 s at -100 °C.

We do not know the value of x in the protonated species $[\text{ReH}_{8-2x}(\eta^2-\text{H}_2)_x(\text{PR}_3)_2]^+$. The intramolecular exchange of hydride and $\eta^2-\text{H}_2$ was fast on the n.m.r. time scale even at -130 °C using CD₂Cl₂/CHCl₂F mixtures as solvents to reach this temperature. It is possible that two or more of the species of type $[\text{ReH}_{8-2x}(\eta^2-\text{H}_2)_x(\text{PR}_3)_2]$ with x = 1, 2, 3, or even 4 are in dynamic equilibrium.

It is also possible that complexes of the type $[ReH_7(PR_3)_2]$ are in dynamic equilibrium with $[ReH_5(\eta^2-H_2)(PR_3)_2]$ and this has been tentatively suggested by Crabtree⁸ for PR₃ = PPh₃ or the PPh₂CH₂PPh₂ analogue: clearly, protonation might proceed *via* this η^2 -dihydrogen complex.

We thank Dr. G. E. Morris for valuable discussions, the S.E.R.C. for support, and British Petroleum for a CASE award.

Received, 9th December 1987; Com. 1772

References

- 1 G. J. Kubas, R. R. Ryan, and D. A. Wrobleski, J. Am. Chem. Soc., 1986, 108, 1339.
- 2 R. H. Crabtree, M. Lavin, and L. Bonneviot, J. Am. Chem. Soc., 1986, 108, 4032.
- 3 R. A. Henderson, J. Chem. Soc., Chem. Commun., 1987, 1670.
- 4 F. M. Conroy-Lewis and S. J. Simpson, J. Chem. Soc., Chem. Commun., 1987, 1675.
- 5 C. Bianchini, C. Mealli, M. Peruzzini, and F. Zanobini, J. Am. Chem. Soc., 1987, 109, 5548.
- 6 E. H. Kelle Zeiher, D. G. DeWit, and K. G. Caulton, J. Am. Chem. Soc., 1984, 106, 7006.
- 7 J. Chatt and R. S. Coffey, J. Chem. Soc. (A)., 1963, 1969.
- 8 R. H. Crabtree. Verbally at the R.S.C. Dalton Division Third International Conference on The Chemistry of the Platinum Group Metals, Sheffield, July 1987.